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At present the solution of the nonlinear problems of shell stability is car- 
ried out, in the main, with the aid of direct variatlonal methods. However, 
the application of these methods to the higher approximations Is greatly 
Impeded because of the awkwardness of the finite-dimensional equations which 
are obtained. In this paper a method of transformation to an Initial value 
problem is used which permits, with the aid of an electronic digital computer, 
the determination of any functional of the solution when the problem is solved 
by a direct variational method In the higher approximations. 

The application of the method Is illustrated by the problems of uniform 
pressure or a concentrated load applied to a sherical cap. 

The present method may be treated as a variation of the step-by-step 
method used previously in [l and 21. Some recommendations are given for the 
elaboration of the method. 

1. We write the equations of the deformed state of the shell symbolically 

in the form 
Ai (u, u, w, p) == 0 (i = i,2,3) 

where U, v and w are the displacements and p is the loading parameter. 

Let us assume that we must determine some functianal @(u, u, w),*which Is 

finally a function of the loading parameter p . In an approximate solution 

of the system (1.1) by any direct variational method, we arrive at some sys- 

tem of finite-dimensional equations which are, In general, transcendental. 

Thus, for example, In using the Bubnov-Galerkln 

vector a Is approximated by aggregates of the 
?l 

an = x Cnkbk 
k=l 

(1.2) 

where the C,, are constant and b, Is a system of vectors which Is complete 

method, the displacement 

form 

for the given problem. The Bubnov-Galerkin procedure yields a system of 

equations of the form 
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B, (&ii, p) = cl (r = 1, . . ., $6) P-3) 
to determine the C,, . 

In this same approximation we may consider the desired functional @ as 
a function of the parameters CDk. To determine the C,, and the functional 

@ we make use of the idea set forth in [3 to 61 of transformation to an 

initial value problem for ordinary differential equations, altering it some- 

what in view of the fact that the chief aim is the determination of the value 

of the functional Q . Below, some practical recommendations will also be 

given for the use of this device. 

Let us assume that the solution of the system (1.3) is known for some 

value pO and, therefore, that the value a of the functional is known. We 

differentiate the system (1.3) through with respect to p and obtain 

au 
-1. 
aP 

+ kj, a%d2010 (r = 1,. . ., n) 

We now adjoin Equation 

to the system (1.4). 

d@ n a@ CK,, 
-- 
dP 

r;---_= 8C 0 
k=l nk 0 

(1.4) 

(1.5} 

The system (1.4), (1.5) can be considered as a system of linear, ordinary 

equations for # and C,, . Using the initial data, we can solve the initial 

value problem for this system and find the solution for a'sufficiently wide 

range of variation of the parameter P . The integration of the system(l.ti), 

(1.5) may be carried out by any method, e.g. by the Runge-Kutta method. Some 

Inconvenience arises iri this connection because the system (1.4),(1.5) is 

not solved for the derivatives. However, this difficulty is easily circum- 

vented. The following circumstances may be obstacles to the use of the 

present method. 

1. Any of the derivatives dcnh- / dp, d@ / dp go to infinity. 

2. Singular points are presented on the curves c,,(p), CD@). 

The first obstacle may be avoided if a new independent variable, say @ , 

is used instead of P . Then the system (1.4),(1.5) assumes the form 

(i.T) 

Use of the system (1.4),(1.5) or (1.6),(1.7) in general makes it possible 

to traverse the entire Q--P curve if there are no Lingular points on it. 

In this connection, it is possible in the computer program to provide for 

automatic transfer from one system to the other in thos. regions where tht 

use of one of them turns out to be impractical. Such transfer can be 



accomplished, for example, by using d@/dp as a criterion, applying the ~ys- 

tern (1.4),(1.5) when jd@/dp( < 1 and (1.6),(1.7) when [a@,/&~( > 1 . It is 

possible, however, to avoid any transitions from one system to another Is a 

more complicated parameter a .is Introduced, a being defined by the rela- 

tion 

The parameter a is the arc length along the curve #J = Q?(p) ; the system 

which corresponds has the form 

The system (1.9) now contains no derivatives which can go to infinity and 

may,t~refore,beinteeratedup to arbitrary large values of the parameter u , 

provided that no singular points are encountered along the way. In the case 

of a singular point, a preliminary investigation of the character of this 

point Is required, and after this It is necessary to devise methods of avold- 

ing it. The same method can also be used when the system (1.3) depends not 
on a single parameter p , but on several, for example, on two 

&(Cnkt&, pa)=0 (t=i,...,n) (1.10) 

We differentiate the system (1.10) with respect to p1 and pa succes&ely, 

As a result we obtain (1.11) 

The system (1.11),(1.12) can be regarded as a system of partial differen- 

tial equations in C, and @ . If some boundary conditions are adJoined 

to it, then a solution for # and C,,, as functions of p1 and pz can be 

found. If the values of C,, and cfr are known on the axes Pl- 0, pz= 0, 

then in this case the system is a Goursat problem ( a set of partial differ- 

ential equations with characteristic'data). Solving the problem by any 

numerical method, e.g. by finite differences, we find the roots of the system 

(1.10) as functlcns of P1 and pz . 

ik. Let us apply the conslderatlons given above to the investigation of 
the nonlinear system of equations which describes the axisymmerric deforma- 

tion of a spherical cap. The equations of the problem may be taken in the 

form Cl] 
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where p Is the dimensionless radius, TX is the radial stress, h is the 
shell thickness, and a1 is the angle of rotation of a section. The remain- 
ing notation Is given in Fig.1. The system {2.1),(2.2) will be considered 

along with boundary conditions which corre- 

spond to complete fixlty 

Q=O, $'__~_#O fW P -1 (2.3) 

Let us assume that the problem is to de- 
Fig. 1 termine the loading curve for the cap, i.e. 

to find the relation between PO and the 

axial displacement /I at the center. I;t is easy to see that f, is deter- 

mined by the relation 

II= hf, f -r;; ~~~~ (2*4) 
1 

Thus, the integral on the right-hand side of (2.4) plays the role of the 

functional Q . In solving the problem by the Bubnov-Galerkin method, we set 

0 = 5 ~~~(p~k~l-pzk-1) (2.5) 
k=l 

From Equation (2.1), taking account of the boundary conditions (2.31, we 
obtain Ji in the form 

‘+‘= +- ~lC”,[(k~2;(k+l)(P2k~-3-2k~~;PP)-(~ x 

x (p2kSlw 2kl+--l; Qj] ++-k$ll$ CnkCnl [(k + 1 -t 2f(k + 1 + 1) X 

x ( p2fE+2W - 2k,,il,,_ P p)_ 

- (k + 1+ f, (k + I) ( P2kf21+1 - 
2k+;W-;--Pp)+ 

+ (k+i)(kZ+l_l) p7k+2z-1- ( 
Zk + 21 -‘-ppj] 

1-p 
(A=?) (2.6) 

We substitute (2.5),{2.6) into the left-hand side of (2.2) and require 

that the expression obtained be ortogonal to (@@+l _ pc)'-l) (f = 1, 2, . . ., n). 
In this way we obtain the following system of equations for the c,, : 

where the coefficients A($, Ay,J,Aklr and Akimr are given by Equations 
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A$,‘,” = - A k(r2) = _ 

--3[r2+Ji2+3kr+6(r+k)+71 i?rl, ii &-Qr+;+i 
i-1 

+siiflk+!n+i( ih k+m+:+r+i -bor+:+i) 

(2.8) 

2 

A,=-311 -& 
i-1 ’ 

(2.9) 

From (2.4) It 1s easy to obtain Expression 

for the unknown functional Q . 

Choosing .f as the lndependent parameter, we obtain the following system 

of differential equations from (2.7),(2.9): 
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tAkf.l) + ha&i?)) + hi (Aklr-i- AEkr) c,l + 
I=1 

n n 

+ 2 2 h&w + hrnr + Amm) GA 
I=1 m-71 

.,n]- f$ A,]= 0 (2.10) 

(2.11) 

We can take the unstressed state of the shell, In the absence of load, 

for the lnltlal data, i.e. for f = 0, p. = 0, Cnk = 0, It is convenient 

to integrate the system (2.10), (2.11) as long as dP,/d.f Is not very large, 

In the contrary case it is expedient to take PO as the independent variable 

and to obtain a system of the form 

n n 

+ 2 2 (htmr + Azkmr + Amr) Cstz C,, - A, = 0 (2.12) 
I=1 rn=l 

(r=l ,.,.,n) (2.13) 

The systems (2.10),(2.11) and 
gutta method. 

(2.X),(2.131 were integrated by the Runge- 
A program was written for the Hinsk-12R digital computer. 

It consisted of a number of subroutines and provided for automatic transfer 
from one system to the other. 

3. Let us examine some results of the computations. Curves of PO vi. j' 
were calculated for values of the parameter 1 = 0,1,2,3,4,5,6,7,8. In all 

cases It was found that the first 

(2.5 
PO 

i 

12 
approximation in the Bubnov-Galerkin 
method differed greatly from the exact 
solution. This fact has been observed 
before in [l, 7 and 83. It was pos- 
sible to obtain satisfactory accuracy 

/o// 

Pig. 2 Fig. 3 
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f / (i) / (2) 

h=O 

- 

- 

Y:Z 3.2756 8.9227 3.3285 9.1178 

E 
2:5 

33.8168 18.1126 20.2541 40.5438 
57.8067 74.8477 

h ='3 

0.4 5.0582 4.9889 

2:o :.i 

8.0227 7.4135 

8.6214 9.4740 8.0737 9.2199 
2.8 17.0395 17.0768 

h=6 

0.4 ' 16.3725 
ia: 

3:6 

21.4384 29.3655 

8.0154 
5.4 28.6860 

0.4 28.7915 

;*; 
;:6 

55.7846 66.4263 
-12.9181 

6.8 11.9799 

17.5066 
25.5967 
16.5576 
14.7784 
28.4528 

h=8 

34.2036 
50.5424 
36.2654 
23.5540 
27.5048 

(3) I (4) 

3.3326 3.3330 
9.1460 9.1467 

20.1943 20.1830 
39.4602 39.4351 
69.7676 69.9035 

4.9827 4.9818 
7.3813 7.3798 
8.0633 8.0635 
9.2144 9.2226 
17.4199 17.4828 

17.6220 
24.9164 
17.4514 
15.3213 
31.1870 

35.0114 

%z 
20:9626 
30.6335 

17.6249 
24.8500 
17.5085 
15.0961 
32.7468 

35.0591 
48.3647 
34.2883 
21.0390 
32.3505 

In the determination of the displacements only on the basis of the 
approximation. In accordance with 
(2.5), the approximation of the 

33 

Fig. 4 Flg. 5 

fourth 

deflection curve Is then carried out with a 
a tenth degree polynomial. 
relations obtained according to the first, 

zFE"%wn In Figs 2 to 5 T:',:l,: 
third and fourth approximations 

from these curves'that thi third and fourth 

Fig. 6 
are practically lndlstlngulshable. A table 
of values of p. Is represented to Indicate 
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the rapidity of convergence. It is clear from the table that for J. 68 , 
the fourth approximation differs from the third by an amount of the order 
of 1.1% even for displacements three to four times the shell thickness. 
From Figs. 2 to 5, It Is obvious that the distinctly expressed tendencies 
for snap-through of the shell present in the first approximation are smoothed 
out in the higher approximations. This may be noticed especially beginning 
with 1 P =j . The disappearance of negative lower critical loads in the 
higher approximations should also be noted. It may be remarked that as X 
increases, the upper and lower critical loads, p+ and p-, increase, as is 
apparent from values given below 

A- 4 5 6 7 8 

p' = 11.2900 17.0488 24.8538 35.1850 . 49.5L13 
p- = 10.1763 12.4166 14.9550 17.8238 20.8838 

A simple interpolation formula can be devised which makes possible the 
direct computation of p+ and p- as functions of A . 

p+ = 0.0424~~4- 0.8527 k3 -f- 7.4109 h2 - 24.5696?~ + 34.7120 (3.1) 

P- = 0.0700 ~4 + 0.15g2h3 - 1.1818 h2 + 5.7484 iL - 2.3056 (3.2) 

Equations (3.1) and (3.2) are valid for A< 10. The results of computa- 
tions for the case of a uniformly distributed load agree very well with the 
solution of this problem obtained in [I] by a finite difference method. 

Fig. 7 Fig. 8 

F&3. 9 Fig. 10 

4, We shall now give some results of an investigation of the effect of 
a concentrated load at the center of the shell (Flg.6). The system (2.7) 
retains its form for this case also. However, in this system p. is now 
the dimensionless magnitude of the concentrated force. The corresponding 

A, now assume the form 



3 
A,=- 

%@ + f)r 

Curves of p,, vs. 4 are given for five approximations in Figs. 7 to 10 
for x = 0, 3, 6, 8. It can be seen from these figures that in this case, 
as was to be expected, the convergence of the Bubnov-Galerkin method has 
become slower, This deterioration of the convergence is predicted in a rig- 
orous error analysis of this method [91. In the present case the difference 
between the fourth and fifth approximations does not exceed 4% for X = 8 . 
It is important to note that in solving the problem in the first approxima- 
tion, the p0 - ,?' curves behave the same way as in the ease of the distri- 
buted pressure. Thus, starting with X = 4 , characteristic points corre- 
sponding to upper and lower critical values are found; i.e. a tendency 
for snap-through of the shell is revealed. However, in the later approxima- 
tions this phenomenon disappears and all the way up to X = 8 the PO= p,(f) 
curve is monotonous for the fifth approximation. This last result shows that 
for loading of the shell by a concentrated force in the center, snap-through 
does not occur, at least for h,< $0. 

This conclusion was drawn in [lOI on the basis of special assumptions of 
a geometric character. 
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