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At present the solution of the nonlinear problems of shell stability is car-
ried out, in the main, with the aid of direct variational methods. However,
the application of these methods to the higher approximations 1s greatly
impeded because of the awkwardness of the finite-dimensional equations which
are obtained. In thls paper a method of transformation to an initial value
problem is used which permits, with the aid of an electronic digital computer,
the determination of any functional of the solution when the problem is solved
by a direct variational method in the higher approximations.

The application of the method i1s 1llustrated by the problems of uniform
pressure or a concentrated load applied to a sherical cap.

The present method may be treated as a variation of the step-by-step
method used previously in [1 and 2). Some recommendations are given for the
elaboration of the method.

1, We write the equations of the deformed state of the shell symbolically
in the form .
Ai(u,v,w,p)=0 (i=1,2,3) 1.9

where yuy, v and w are the displacements and p 1s the loading parameter.
Let us assume that we must determine some functianal ¢{u, v, w),+which 1is
finally a function of the loading parameter P . In an approximate solution
of the system (1.1) by any direct variational method, we arrive at some sys-
tem of finite-dimensional equations which are, in general, transcendental.
Thus, for example, 1in using the Bubnov-Galerkin method, the displacement
vector & 1s approximated by aggregates of the form

a, = 2 anbk (12)
k=1

where the ¢, are constant and b, 1s a system of vectors which 1s complete
for the given problem. The Bubnov-Galerkin procedure ylelds a system of
equations of the form
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B, (Coyy p)y =0 (r=1,...,n) (1.3)

to determine the ¢©,, .

In thls same approximation we may consider the desired functional ¢ as
a function of the parameters ¢,, . To determine the (,, and the functional
b we make use of the ldea set forth in [3 to 6] of transformation to an
initial value problem for ordlnary differential equatlons, altering it some-
what 1In view of the fact that the chief aim is the determination of the value
of the functional ¢ . Below, some practical recommendations will also be
given for the use of this device.

Let us assume that the soluftlion of the system (1.3) is known for some
value p, and, therefore, that the value & of the functional 1s known. We
differentiate the system (1.3} through with respect to p and obbtain

n

OB, | v 9B, Uy _
st Dan gy 0 =t (1.4)

We now adjoin Equation

r1s) NPT ¥ dC -
ap 522;-75;-== {1.5)
to the system (1.4). fe=1
The system (1.4), (1.5) can be considered as a system of linear, ordinary
equations for ¢ and ¢, . Using the initial data, we can solve the initial
value problem for this system and find the solution for a sufficiently wide
range of variation of the parameter P . The integration of the system(l.#),
{(1.5) may be carried out by any method, e.g. by the Runge-Kutta method. Some
inconvenience arises in this connection because the system (1.4),(1.5) is
not solved for the derivatives. However, this difficulty is easily circum~
vented. The following circumstances may be obstacles to the use of the
present method.

1. Any of the derivatives dC,./dp, d®/dp go to infinity.
2. 8ingular points are presented on the curves an(lﬁ, Q)(p),

The first obstacle may be avoided if a new independent variable, say ¢,
is used instead of P . Then the system {1.4),(1.5) assumes the form

n s
4B, dp Ay 8B_dC -0 (1.6)
DI e AJ T M ;
dp dD — ac ;. do
v oM nk o -
Zacﬁd(p —1=0 (L.7)

Use of the system (1.%),{1.5) or (1.6),{(1.7) in general makes it possible
to traverse the entire & — p curve 1f there are no cingular points on it.

In this connection, it 1s possible in the computer program to provide for
automatic transfer from one system to the other in thosc regions where the
use of one of them turns out to be impractical. Such transfer can be
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accomplished, for example, by using d&/dp as a criterion, mpplying the sys-
tem (1.%),(1.5) when |d9/3p| < 1 and (1.6),(1.7) when |d¢/dp| > 1 . It is
possible, however, to avold any transitions from one system to another is a

more complicated parameter o l1s introduced, o being deflned by the rela-

tion p IO 21
=\[1+ (G e 1.8)

The parameter o 1is the arc length along the curve ¢ = ®(p); the system
which corresponds has the form

™

3B, 4p 8B, dC,,

. rer r =0
dp do kzlacﬂk ds

3

2 a0 dcnk - ap @ _ [1 L (@)2]% (1 q)
6Cn,‘ ds T ds’ do ds o
The system (1.9) now contains no derivatives which can go to infinity and

may,therefore, be integrated up to arbitrary large values of the parameter o¢ ,

provided that no singular points are encountered along the way. In the case

of a singular point, a preliminary investigation of the character of this
point is required, and after this it 1s necessary to devise methods of avold-
ing it. The same method can also be used when the system (1.3) depends not
on & single parameter P , but on several, for example, on two

B, (Cak, P1, P2) =0 (r=1,...,n) (1.10)
We differentiate the system (1.10) with respect to p, and p, successively.
As a result we obtain (1_11)
<« 0B, 3C,, 2 i‘l #B, % #B, dC, OB,
h‘—‘i aC 6p16p2 OCﬂké’C . 0p1 apg 6p160"k Ops ' Op1dpa

Z o0 9C,y 2 PO 9y Cn _ (1.12)
3C,,oCy, = '

aplapz 8C"k amopy nk 9C op Bps

The system {1.11),{1.12) can be regarded as a system of partial differen-
tial equations in ¢, and ¢ . If some boundary conditions are adjoined
to it, then a solution for ¢ and (,, as functions of p, and p, can be
found. If the values of (., and ¢ are known on the axes Py= 0, pP,= 0,
then in this case the system is a Goprsat problem { a set of partial differ-
ential equations with characteristic data). Solving the problem by any

numerical method, e.g. by finite differences, we find the roots of the system
(1.10) as functicns of P, and P, .

2. Let us apply the considerations given above to the investigation of
the nonllnear system of equations whlich describes the axisymmerric deforma-

tion of a spherical cap. The equatlons of the problem may be taken 1ln the
form [ 1]

vt =ofer bo) fso T o= g0) @
99"+6’———§~—=—12(’1—92)\b(§£p+9)-%6(1—&&2)19093( = &)

(2.2)
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where p 18 the dimensionless radius, 7, 1s the radlal stress, » 1s the

shell thickness, and ¢, is the angle of rotation of a section. The remain-

ing notation is given in Fig.l. The system {2.1),{2.2) will be considered
along with boundary conditlons which corre-

P spond to complete fixity
m 0=0, |¥—pt=0 o=t (22
‘ 4
% L‘*"*‘ﬁ‘“*"J» Let us assume that the problem 1s to de-
Filg. 1 termine the loading curve for the cap, 1l.e.

to find the relation between P, and the
axial displacement [, at the center. It 1s easy to see that /; 1s deter-
mined by the relation 0

fo=nhf.  f=\6dp 2.4)

Thus, the integral on the right-hand side of (2.4) plays the role of the
functional ¢ . In solving the problem by the Bubnov-Galerkin method, we set

= D) Cug (p2+1 —p2-1) (2.5)
k=1
From Equation (2.1), taking account of the boundary conditions (2.3}, we
obtain ¢ in the form

rox 1 s 2%43—p 1
‘l’:Télcnk[(k+2)(k+1)(pzk%” T—p p)—(k+1)kx

% (pzk+1_.. .2-’5-11'—__3-};:—‘-* ﬂ +- 2 Z CorCo [(k+l }-2)1(k+l +1)

Fo=] l=
2% + 20 3 —
% (p2k+2£+3______j"r:~%~___}." p)—-
2 , % 4201 —p
—rTEhEE P T e+
1 o, Z%+dU—1—p _ 28
Ty oy gy (p?kw i g p)] (}“ ) (2.6)

We substitute (2.5),{2.6) into the left-hand side of (2.2) and require
that the expression obtained be ortogonal to (pW%I_” 92"1)(r =1,2,..., 1)
In this way we obtain the following system of equations for the C;y ¢

n

DAY + 224, Coe + A Z E Ay CoxCi 4 2} Z E Astmr CorCoiCom=

k=1 k=11=1 k=11 =1m=1

= Do, r=1,2,...,n 2.7)

where the coefficlents 11%?, %)114kh‘ and Apmr are given by Equatlons
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2

From. (2.4) it is easy to obtain Expression

n
1
/ = Z 2/; (/L “.' )Cuk (29)
for the unknown functional ¢ .

Choosing J as the independent parameter, we obtain the following system
of differential equations from (2.7),(2.9):
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>, dcC, .
pRa (49 224 43 %) (At Au) Cus +
— =1
"l‘ ZZ Z (Aklmr + Alkmr + Amklr) CnlcnmJ"““%pfg A,}s 0 (2-10)
=1 m=1
< 1 dcnk
Em =1 (r=1,...,n) (2.11)

We can take the unstressed state of the shell, in the absence of load,
for the initial data, 1l.e. for f == (), Py = 0, Cpx = 0, It is convenient
to integrate the system (2.10), (2.11) as long as dP,/df 1s not very large.
In the contrary case it is expedient to take P, as the independent variable
and to obtain a system of tihe form

n

dcn . n
y ‘1 dpuk {(Ak("l) + A‘ZA"('?)) + A Z(Aklr + Apr) Cor +
= =1
+ E 2 (Akzmr + Alkmr + Amklr) Cnl Cnm} - Ar = 0 (2.12)
1=1m=1
& 1 dC df
nk
Elzk *E+0)dp ~ dpo (r=1,...,n) (2.13)

. The systems (2.10),{2.11) and (2.12),(2.13) were integrated by the Runge-
Kutta method. A program was written for the Minsk-12" digital computer,

It consisted of a number of subroutines and provided for automatic transfer
from one system to the other.

3. Let us examlne some results of the computatlons. Curves of Pg vs. S
were calculated for values of the parameter \ = 0,1,2,3,4,5,6,7,8. In all

cases 1t was found that the first

approximation in the Bubnov-Galerkin
{25 method differed greatly from the exact
solution. Thils fact has been observed
before in {1, 7 and 8]. It was pos-
sible to obtaln satlsfactory accuracy
100
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{: /
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Fig. 2 Fig. 3
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f ($)] @) 3) %)

A=0
0.5 | 3.2756 3.3285 | 3.3326 | 3.3330
1.0 | 8.9227 9.1478 | 9.1460 |  9.1467
1.5 | 184126 | 20.2541 | 20,4943 | 20.1830
2.0 | 33.8168 | 40.5438 | 39.4602 | 39.4351
2.5 | 57.8067 | 74.8477 | 69.7676 | 69.9035
A=3
0.4 | 5.0582 4.9889 | 4.9827 | 4.9818
1.0 | 8.0227 7.4435 | 7.3813 | 7.3798
1.6 | 8.6214 8.0737 | 8.0633 | 8.0635
2.0 | 9.4740 9.2199 | 9.2144 | 9.2226
2.8 | 17.0395 | 17.0768 | 17.4199 | 17.4828
h=6

16.3725 17.5066 17.6220 17.6249
29.3655 25.5967 24.9164 24,8500
21.4384 16.5576 17.4514 17.5085
8.0154 14.7784 15.3213 15.0961
28.6860 28.4528 31.4870 32.7468

LN O
OO O

A=8
0.4 28.7915 34.2036 35.0114 35.0591
1.0 55.7846 50.5424 48.6588 48.3647
2.0 66.4263 36.2654 33.8416 34.2883
5.6 | —12.9181 23.5540 20.9626 21.0390
6.5 11.9799 27.5048 30.6335 32.3505

in the determination of the displacements only on the basis of the fourth
approximation. In accordance with
(2.5), the approximation of the Py

pﬂ J 50 r Q> R

50t

NN

A=6 4

T
S
L9

25 = . /

P deflectlion curve is then carried out with a

a tenth degree polynomial. The po — S
relations obtained according to the first,
4 ¢ second, third and fourth approximations

Y | . 4 are shown 1in Flgs. 2 to 5. It is clear
a —~* from these curves that the third and fourth
are practically Ilndistingulshable. A table
Fig. 6 of values of P, 1s represented to indicate
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the rapidity of convergence. It is clear from the table that for A

the fourth approximation differs from the third by an amount of the order
of 1.1% even Tor displacements three to four times the shell thickness.

From Flgs., 2 to 5, 1t 1s obvious that the distinctly expressed tendenciles
for snap-through of the shell present in the first approximation are smoothed
out in the higher approximations. Thls may be noticed especially beginning
with A = 5 . The dlsappearance of negative lower critical loads in the
higher approximations should also be noted. It may be remarked that as
increases, the upper and lower critical loads, p* and p~, increase, as is
apparent from values given below

A= 4 5 6 7 8
pt=1£.2900 17.0488 24.8538 35.1830 49.5413
P~ =10.4763 12.4166  14.9550 17.8238 20.8838

A simple interpolation formula can be devised which makes possible the
direct computation of p* and p~ as functions of A

+ — 0.0424 A — 0.8527 A8 - 7.4409 A% — 24,3696 A + 34.7120 3.1
p~ = 0.0700 A* + 0.1592 A3 — 1.1818 A% + 5.7484 A — 2.3056 (3.2)

Equations (3.1) and (3.2) are valid for A < 10. The results of computa~-
tions for the case of a uniformly distributed load agree very well with the
solution of this problem obtained in [1] by a finlte difference method.

Py
25 ¢

gt A=g

54
’
A=d
z
7 25
/ 4.5
/‘///‘
f
7 7 G
Fig. 9 Fig. 10

4, We shall now give some results of an investigation of the effect of
a concentrated load at the center of the shell (Fig.6). The system (2.7)
retains its form for thils case also. However, in thls system p, 1s now
the dimensionless magnitude of the concentrated force. The corresponding
A. now assume the form
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3
A== TOr (4-1)

Curves of Py vs. J are given for five approximations in Figs. 7 to 10
for A = 0, 3, 6, 8. It can be seen from these figures that in this case,
as was to be expected, the convergence of the Bubnov-Galerkin method has
become slower, This deterlioration of the convergence 1s predieted in a rig-
orous error analysls of this method [91. In the present case the difference
between the fourth and fifth approximations does not exceed 4% for X =8 .
It is important to note that 1n solving the problem in the first approxima-
tion, the ps — 7 curves behave the same way as in the case of the distri-
buted pressure. Thus, starting with X = 4 , characteristic points corre-
sponding to upper and lower critical. values are found; 1i.e. a tendency
for snap~through of the shell is revealed. However, in the later approxima-
tions this phenomenon disappears and all the way up to X = 8 the Po= Po(/)
curve 1s monotonous for the fifth approximation. This last result shows that
for loading of the shell by a concentrated force in the center, snap-through
does not occur, at least for } < 10.

This conclusion was drawn in [10] on the basis of speclal assumptlons of
a geometric character.
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